DYSFUNCTION OF GABAERGIC SYSTEM IN THE INSULAR CORTEX CONTRIBUTES TO IMPAIRMENTS OF DECISION-MAKING IN METHAMPHETAMINE-DEPENDENT RATS

K. Yamada1 and H. Mizoguchi2

1Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Japan and 2Futuristic Environmental Simulation Center, Research Institute of Environmental Medicine, Nagoya University

Introduction. Patients suffering from neuropsychiatric disorders such as substance-related and addictive disorders have impairments in decision-making, which may be associated with their behavioral abnormalities. However, the neuronal mechanisms underlying such impairments are largely unknown. To address this issue, we developed a gambling test for rodents using an 8-arm radial arm maze, and tested the effect of chronic methamphetamine (METH) treatment on decision-making in rats.

Method. The c-fos staining was applied to determine the brain areas activated by the gambling test. Depolarization-evoked GABA release was measured by in vivo dialysis.

Results. METH-dependent rats choose a high-risk/high-reward option more frequently, and assign higher subjective value to high returns, than control rats, suggesting that decision-making is impaired in the METH-dependent animals. Immunohistochemical analysis of c-fos following the gambling test revealed aberrant activation of the insular cortex (INS) and nucleus accumbens in METH-dependent animals. Pharmacological studies together with in vivo microdialysis showed that GABAergic neurotransmission in INS played a crucial role in decision-making.

Conclusion. Our findings suggest that INS is a critical region involved in decision-making, and that insular GABAergic dysfunction in METH-dependent rats results in risk-taking behaviors associated with poor decision-making.