NEUROPROTECTIVE SIGNALING PATHWAY VIA NICOTINIC RECEPTORS

T. Kume1 and A. Akaike1,2
1Graduate School of Pharmaceutical Sciences, Kyoto University, Japan and 2Graduate School of Pharmaceutical Sciences, Nagoya University

Introduction. Our previous data showed that treatment of nicotine or donepezil prevented glutamate-induced cytotoxicity via nicotinic receptors (nAChRs) using primary culture of rat cortical neurons. The present study was performed to investigate the detailed mechanisms of nAChR-mediated neuroprotection, especially involvement of glycogen synthase kinase-3β (GSK3β) as a downstream of PI3K-Akt pathway.

Methods. Neuronal death was determined by LDH release assay in rat primary culture of cerebral cortex. Phosphorylation of GSK3β and the expression level of β-catenin were measured by western blot analysis.

Results and Conclusion. Donepezil induced the Ser9-phosphorylation of GSK3β in rat cultured cortical neurons. LY294002, an inhibitor of PI3K, prevented that phosphorylation of GSK3β. Glutamate induced the Tyr216-phosphorylation of GSK3β. Donepezil prevented glutamate-induced phosphorylation of Tyr216. Bcl-2 was upregulated by donepezil treatment, but not by SB216763, an inhibitor of GSK3β treatment. On the other hand, the expression level of β-catenin was increased by both donepezil and SB216763. These results suggested that inactivation of GSK3β as the downstream signaling of PI3K-Akt pathway play a crucial role in the nAChR-mediated neuroprotection.